The Effect of Fiber Orientation on the Toughening of Short Fiber-Reinforced Polymers
نویسندگان
چکیده
The effect of fiber orientation on the toughening of polymers by short glass fibers generally below their critical length was investigated using specimens with either well-aligned or randomly oriented fibers. The fibers were aligned by an electric field in a photopolymerizable monomer, which was polymerized while the field was still being applied. These materials were fractured with the aligned fibers in three orientations with respect to the crack plane and propagation direction. Specimens with fibers aligned normal to the fracture plane were the most tough, those with randomly oriented fibers were less tough, and those with fibers aligned within the fracture plane were the least tough. The fracture behaviors compared favorably with predictions based on observed processes accounting for fiber orientation. The processes considered were fiber pull-out (including snubbing), fiber breakage, fiber–matrix debonding, and localized matrix-yielding adjacent to fibers bridging the fracture plane. Fibers not quite perpendicular to the fracture plane provided the greatest toughening; these fibers pulled out completely and gave a significant contribution from snubbing. Fibers at higher angles provided less toughening, involving nearly equal contributions from pull-out, breakage, and debonding. Fibers within the fracture plane provided the least toughening, involving debonding alone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2740–2751, 2003
منابع مشابه
Influence of Temperature and Moisture on the Compressive Strength of Carbon Fiber Reinforced Polymers
The effect of moisture absorption and high temperature on the compressive strength of unidirectional IM7/977-2 carbon/epoxy resins have been investigated experimentally. The specimens were divided into 4 groups, and tested under 4 different conditions by varying the testing temperature and moisture parameters. The fiber orientation selected were 0o, ±45o and 90o...
متن کاملEffect of Adding Nanoclay on the Mechanical Behaviour of Fine-grained Soil Reinforced with Polypropylene Fibers
In this study the performance of clay nano-particles on the soil reinforced with Polypropylene fibers (PP-fiber) has been investigated. Also a series of investigations concerning the effect of random orientation of fibers on the engineering behaviour of soil were conducted. Soil mixtures were modified with varying percentages of nanoclay and Fibers. Unconfined compressive strength (UCS), Compac...
متن کاملCreep Behavior of Basalt and Glass Fiber Reinforced Epoxy Composites
The creep behavior of basalt fiber reinforced epoxy (BFRE) and glass fiber reinforced epoxy (GFRE) composites was studied through tensile testing at high temperature. To study the effect of reinforcing epoxy, the micro glass powder (MGP) was added at various volume percentage into the epoxy resin in BFRE composites. The initial strain for all the specimens were evaluated and compared with each ...
متن کاملFEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites
The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...
متن کاملBuckling Analysis of a Fiber Reinforced Laminated Composite Plate with Porosity
Fiber-reinforced laminated composites are frequently preferred in many engineering projects. With the development in production technology, the using of the fiber reinforced laminated composites has been increasing in engineering applications. In the production stage of the fiber-reinforced laminated composites, porosities could be occurred due to production or technical errors. After a level o...
متن کامل